nxcals.api.extraction.data.builders.DataFrame.orderBy
- DataFrame.orderBy(*cols: Union[str, Column, List[Union[str, Column]]], **kwargs: Any) DataFrame
Returns a new
DataFrame
sorted by the specified column(s).New in version 1.3.0.
- Parameters:
cols (str, list, or
Column
, optional) – list ofColumn
or column names to sort by.ascending (bool or list, optional) – boolean or list of boolean (default
True
). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the cols.
Examples
>>> df.sort(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')]