nxcals.api.extraction.data.builders.DataFrame.sample
- DataFrame.sample(fraction: float, seed: Optional[int] = None) DataFrame
- DataFrame.sample(withReplacement: Optional[bool], fraction: float, seed: Optional[int] = None) DataFrame
Returns a sampled subset of this
DataFrame
.New in version 1.3.0.
- Parameters:
withReplacement (bool, optional) – Sample with replacement or not (default
False
).fraction (float, optional) – Fraction of rows to generate, range [0.0, 1.0].
seed (int, optional) – Seed for sampling (default a random seed).
Notes
This is not guaranteed to provide exactly the fraction specified of the total count of the given
DataFrame
.fraction is required and, withReplacement and seed are optional.
Examples
>>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10