nxcals.api.extraction.data.builders.DataFrame.cube
- DataFrame.cube(*cols: ColumnOrName) GroupedData
- DataFrame.cube(__cols: Union[List[Column], List[str]]) GroupedData
Create a multi-dimensional cube for the current
DataFrame
using the specified columns, so we can run aggregations on them.New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters:
cols (list, str or
Column
) – columns to create cube by. Each element should be a column name (string) or an expression (Column
) or list of them.- Returns:
Cube of the data by given columns.
- Return type:
GroupedData
Examples
>>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | NULL|NULL| 2| | NULL| 2| 1| | NULL| 5| 1| |Alice|NULL| 1| |Alice| 2| 1| | Bob|NULL| 1| | Bob| 5| 1| +-----+----+-----+