nxcals.api.extraction.data.builders.DataFrame.groupBy

DataFrame.groupBy(*cols: ColumnOrName) GroupedData
DataFrame.groupBy(__cols: List[Column] | List[str]) GroupedData

Groups the DataFrame using the specified columns, so we can run aggregation on them. See GroupedData for all the available aggregate functions.

groupby() is an alias for groupBy().

Added in version 1.3.0.

Changed in version 3.4.0: Supports Spark Connect.

Parameters:

cols (list, str or Column) – columns to group by. Each element should be a column name (string) or an expression (Column) or list of them.

Returns:

Grouped data by given columns.

Return type:

GroupedData

Examples

>>> df = spark.createDataFrame([
...     (2, "Alice"), (2, "Bob"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])

Empty grouping columns triggers a global aggregation.

>>> df.groupBy().avg().show()
+--------+
|avg(age)|
+--------+
|    2.75|
+--------+

Group-by ‘name’, and specify a dictionary to calculate the summation of ‘age’.

>>> df.groupBy("name").agg({"age": "sum"}).sort("name").show()
+-----+--------+
| name|sum(age)|
+-----+--------+
|Alice|       2|
|  Bob|       9|
+-----+--------+

Group-by ‘name’, and calculate maximum values.

>>> df.groupBy(df.name).max().sort("name").show()
+-----+--------+
| name|max(age)|
+-----+--------+
|Alice|       2|
|  Bob|       5|
+-----+--------+

Group-by ‘name’ and ‘age’, and calculate the number of rows in each group.

>>> df.groupBy(["name", df.age]).count().sort("name", "age").show()
+-----+---+-----+
| name|age|count|
+-----+---+-----+
|Alice|  2|    1|
|  Bob|  2|    2|
|  Bob|  5|    1|
+-----+---+-----+