nxcals.api.extraction.data.builders.DataFrame.agg
- DataFrame.agg(*exprs: Union[Column, Dict[str, str]]) DataFrame
Aggregate on the entire
DataFrame
without groups (shorthand fordf.groupBy().agg()
).New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters:
exprs (
Column
or dict of key and value strings) – Columns or expressions to aggregate DataFrame by.- Returns:
Aggregated DataFrame.
- Return type:
Examples
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.agg({"age": "max"}).show() +--------+ |max(age)| +--------+ | 5| +--------+ >>> df.agg(sf.min(df.age)).show() +--------+ |min(age)| +--------+ | 2| +--------+