nxcals.api.extraction.data.builders.DataFrame.groupBy
- DataFrame.groupBy(*cols: ColumnOrName) GroupedData
- DataFrame.groupBy(__cols: Union[List[Column], List[str]]) GroupedData
Groups the
DataFrame
using the specified columns, so we can run aggregation on them. SeeGroupedData
for all the available aggregate functions.groupby()
is an alias forgroupBy()
.New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters:
cols (list, str or
Column
) – columns to group by. Each element should be a column name (string) or an expression (Column
) or list of them.- Returns:
Grouped data by given columns.
- Return type:
GroupedData
Examples
>>> df = spark.createDataFrame([ ... (2, "Alice"), (2, "Bob"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])
Empty grouping columns triggers a global aggregation.
>>> df.groupBy().avg().show() +--------+ |avg(age)| +--------+ | 2.75| +--------+
Group-by ‘name’, and specify a dictionary to calculate the summation of ‘age’.
>>> df.groupBy("name").agg({"age": "sum"}).sort("name").show() +-----+--------+ | name|sum(age)| +-----+--------+ |Alice| 2| | Bob| 9| +-----+--------+
Group-by ‘name’, and calculate maximum values.
>>> df.groupBy(df.name).max().sort("name").show() +-----+--------+ | name|max(age)| +-----+--------+ |Alice| 2| | Bob| 5| +-----+--------+
Group-by ‘name’ and ‘age’, and calculate the number of rows in each group.
>>> df.groupBy(["name", df.age]).count().sort("name", "age").show() +-----+---+-----+ | name|age|count| +-----+---+-----+ |Alice| 2| 1| | Bob| 2| 2| | Bob| 5| 1| +-----+---+-----+