nxcals.api.extraction.data.builders.DataFrame.checkpoint
- DataFrame.checkpoint(eager: bool = True) DataFrame
Returns a checkpointed version of this
DataFrame. Checkpointing can be used to truncate the logical plan of thisDataFrame, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set withSparkContext.setCheckpointDir().Added in version 2.1.0.
- Parameters:
eager (bool, optional, default True) – Whether to checkpoint this
DataFrameimmediately.- Returns:
Checkpointed DataFrame.
- Return type:
Notes
This API is experimental.
Examples
>>> import tempfile >>> df = spark.createDataFrame([ ... (14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> with tempfile.TemporaryDirectory() as d: ... spark.sparkContext.setCheckpointDir("/tmp/bb") ... df.checkpoint(False) DataFrame[age: bigint, name: string]