nxcals.api.extraction.data.builders.DataFrame.fillna
- DataFrame.fillna(value: LiteralType, subset: str | Tuple[str, ...] | List[str] | None = None) DataFrame
- DataFrame.fillna(value: Dict[str, 'LiteralType']) DataFrame
Replace null values, alias for
na.fill()
.DataFrame.fillna()
andDataFrameNaFunctions.fill()
are aliases of each other.Added in version 1.3.1.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters:
value (int, float, string, bool or dict) – Value to replace null values with. If the value is a dict, then subset is ignored and value must be a mapping from column name (string) to replacement value. The replacement value must be an int, float, boolean, or string.
subset (str, tuple or list, optional) – optional list of column names to consider. Columns specified in subset that do not have matching data types are ignored. For example, if value is a string, and subset contains a non-string column, then the non-string column is simply ignored.
- Returns:
DataFrame with replaced null values.
- Return type:
Examples
>>> df = spark.createDataFrame([ ... (10, 80.5, "Alice", None), ... (5, None, "Bob", None), ... (None, None, "Tom", None), ... (None, None, None, True)], ... schema=["age", "height", "name", "bool"])
Fill all null values with 50 for numeric columns.
>>> df.na.fill(50).show() +---+------+-----+----+ |age|height| name|bool| +---+------+-----+----+ | 10| 80.5|Alice|NULL| | 5| 50.0| Bob|NULL| | 50| 50.0| Tom|NULL| | 50| 50.0| NULL|true| +---+------+-----+----+
Fill all null values with
False
for boolean columns.>>> df.na.fill(False).show() +----+------+-----+-----+ | age|height| name| bool| +----+------+-----+-----+ | 10| 80.5|Alice|false| | 5| NULL| Bob|false| |NULL| NULL| Tom|false| |NULL| NULL| NULL| true| +----+------+-----+-----+
Fill all null values with to 50 and “unknown” for ‘age’ and ‘name’ column respectively.
>>> df.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+----+ |age|height| name|bool| +---+------+-------+----+ | 10| 80.5| Alice|NULL| | 5| NULL| Bob|NULL| | 50| NULL| Tom|NULL| | 50| NULL|unknown|true| +---+------+-------+----+